Rodríguez, M. L., Medina de la Rosa, E., Gili, P., Martín-Zarza, P., Martín-Reyes, M. G., Medina, A. \& Díaz-González, M. C. (1987). Acta Cryst. C43, 134-136.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
West, D. X. \& Pannell, L. K. (1989). Transition Met. Chem. 14, 457460.

Acta Cryst. (1995). C51, 1018-1020

## Benzyl 2-Acetamido-4-azido-3-O-benzoyl-6-$\boldsymbol{O}$-(tert-butyldiphenylsilyl)-2,4-dideoxy- $\boldsymbol{\beta}$-Dglucopyranoside

John C. Barnes<br>Department of Chemistry, University of Dundee, Dundee DDI 4HN, Scotland

Robert A. Field
Departments of Chemistry and Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland
(Received 9 September 1994; accepted 26 October 1994)


#### Abstract

The title compound, $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}$, is a key intermediate in the preparation of inhibitors for bovine $\beta-1,4-$ galactosyl transferase. The configuration of the sugar was as expected. Libration of the tert-butyldiphenylsilyl group about an axis normal to the glucose ring is not coupled to the glucose. Intermolecular hydrogen bonding at the acetamido group leads to a sixfold screw axis.


## Comment

During a recent study of inhibitors of bovine $\beta-1,4-$ galactosyl transferase, acceptor analogues were prepared by a sequence of reactions starting from benzyl $N$ -acetyl- $\beta$-D-galactosaminide. The title compound, (I), is a key intermediate in this sequence, representing the stage at which the configuration is reversed to give the required glucosaminide products (Field, Neville, Smith \& Ferguson, 1994). The stereochemistry was found to be as expected, confirming the validity of the reaction sequence.

(I)


Fig. 1. Displacement ellipsoid plot ( $50 \%$ probability) of benzyl 2-acetamido-4-azido-3-O-benzoyl-6-O-(tert-butyldiphenylsilyl)-2,4-dideoxy- $\beta$-d-glucopyranoside perpendicular to the glucose ring.


Fig. 2. Packing diagram showing the hydrogen bonds ( $\mathrm{O} 20 \cdots \mathrm{~N} 18^{\prime}$ ) forming the sixfold screw axis parallel to $c$. Phenyl groups have been omitted for clarity.


Fig. 3. Space-filling diagram looking from N49 towards C15, showing the cleft in the molecule.

The molecule showed no unusual interatomic distances or angles. Selected torsion angles are given in Table 2. The angles of mean planes relative to the plane of C1, C3, C5 are as follows: phenyl groups C12-C17 and C24-C29 18.8 (2) and $70.4(2)^{\circ}$, respectively; acetamide group N18-C21 86.0 (2) ${ }^{\circ}$. Significant independent thermal motion occurs in each of the side groups of the glucose moiety. Attempts to resolve the 'wagging' motion of the azide group as disorder were not successful. The tert-butyldiphenylsilyl group is positioned to minimize contacts with the rest of the molecule. The plane of the methyl C atoms (C32, C33 and C34) is only $14.9(3)^{\circ}$ from being parallel to the plane of C 1 , C3 and C5. The phenyl groups at C35 and C41 are related by an approximate mirror plane through $\mathrm{Si} 30, \mathrm{C} 31$ and C32. There is no disorder and the thermal motion is largely libration of the whole tert-butyldiphenylsilyl group about an axis close to $\mathrm{Si} 30-\mathrm{C} 31$. This motion is absorbed by the O6-C6 bond, approximately parallel to Si30-C31 and not coupled to the glucose moiety.

The unusual space group, $P 6_{5}$, occurs because of hydrogen bonding between acetamido groups. The molecules are connected into a spiral by interaction between O 20 and $\mathrm{H} 18-\mathrm{N} 18$ of the molecule at $(1+x-y, x$, $\left.z-\frac{1}{6}\right)[2.755(5) \AA$, Fig. 2]. The molecule has a cleft running across the glucose, on the face adjacent to the tert-butyl group, from C15 towards N49 (Fig. 3). This prevents other short intermolecular contacts which would occur from the action of the sixfold screw axis.

## Experimental

Crystals of the title compound were grown from an ethyl acetate solution.

## Crystal data

$\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}$
$M_{r}=678.85$
Hexagonal
$P 65$
$a=15.2730$ (10) $\AA$
$c=27.399(3) \AA$
$V=5535.0(8) \AA^{3}$
$Z=6$
$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

| Enraf-Nonius CAD-4 FAST | 3333 observed reflections <br> diffractometer |
| :--- | :--- |
| Area detector | $R_{\text {nt }}=0.0914$ |
| Absorption correction: | $\theta_{\max }=25.09^{\circ}$ |
| none | $h=-9 \rightarrow 16$ |
| 18978 measured reflections | $k=-16 \rightarrow 14$ |
| 5421 independent reflections | $l=-22 \rightarrow 29$ |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0400$
$w R\left(F^{2}\right)=0.0919$
$S=0.635$
5420 reflections
450 parameters
H atoms were refined using a riding model, refining $U_{\text {iso }}$ in groups

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1000 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.058 \\
\Delta \rho_{\max }=0.193 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.171 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| C1 | 0.8320 (3) | 0.8224 (3) | -0.0194 (1) | 0.0399 (9) |
| 01 | 0.9069 (2) | 0.8163 (2) | -0.0458 (1) | 0.0517 (7) |
| C2 | 0.7924 (3) | 0.8789 (3) | -0.0498 (1) | 0.0368 (8) |
| C3 | 0.7113 (3) | 0.8824 (2) | -0.0186 (1) | 0.0338 (8) |
| O3 | 0.6668 (2) | 0.9313 (2) | -0.0454 (1) | 0.0381 (5) |
| C4 | 0.6308 (2) | 0.7772 (2) | -0.0048 (1) | 0.0352 (8) |
| C5 | 0.6797 (3) | 0.7254 (3) | 0.0223 (1) | 0.0397 (8) |
| 05 | 0.7541 (2) | 0.7238 (2) | -0.0087 (1) | 0.0418 (6) |
| C6 | 0.6079 (3) | 0.6196 (3) | 0.0386 (1) | 0.0458 (9) |
| O6 | 0.5440 (2) | 0.5605 (2) | -0.0003 (1) | 0.0473 (6) |
| C11 | 0.9601 (3) | 0.7795 (4) | -0.0165 (1) | 0.0582 (12) |
| C12 | 1.0689 (3) | 0.8300 (3) | -0.0319 (1) | 0.0433 (9) |
| C13 | 1.1178 (3) | 0.7752 (3) | -0.0323 (1) | 0.0455 (9) |
| C14 | 1.2192 (3) | 0.8204 (4) | -0.0443 (1) | 0.0616 (11) |
| C 15 | 1.2725 (4) | 0.9201 (4) | -0.0556 (2) | 0.0711 (13) |
| C16 | 1.2258 (4) | 0.9761 (3) | -0.0546 (2) | 0.0747 (14) |
| C17 | 1.1241 (4) | 0.9312 (3) | -0.0433 (1) | 0.0609 (11) |
| N18 | 0.8722 (2) | 0.9776 (2) | -0.0628 (1) | 0.0388 (7) |
| C19 | 0.9056 (4) | 1.0019 (3) | -0.1085 (2) | 0.0594 (12) |
| O20 | 0.8639 (3) | 0.9451 (2) | -0.1431 (1) | 0.0836 (11) |
| C21 | 0.9973 (5) | 1.1044 (4) | -0.1147 (2) | 0.096 (2) |
| C22 | 0.6609 (3) | 1.0069 (2) | -0.0222 (2) | 0.0381 (8) |
| 023 | 0.6904 (2) | 1.0338 (2) | 0.0187 (1) | 0.0550 (7) |
| C24 | 0.6142 (3) | 1.0513 (2) | -0.0532 (1) | 0.0405 (9) |
| C25 | 0.5964 (3) | 1.0302 (3) | -0.1022 (2) | 0.0558 (11) |
| C26 | 0.5593 (4) | 1.0813 (4) | -0.1297 (2) | 0.0748 (14) |
| C27 | 0.5404 (3) | 1.1515 (3) | -0.1071 (2) | 0.0685 (13) |
| C28 | 0.5556 (3) | 1.1703 (3) | -0.0590 (2) | 0.0625 (12) |
| C29 | 0.5929 (3) | 1.1209 (3) | -0.0319 (2) | 0.0540 (10) |
| Si30 | 0.49074 (7) | 0.43650 (7) | 0.00251 (3) | 0.0385 (2) |
| C31 | 0.4225 (3) | 0.3885 (3) | -0.0573 (1) | 0.0491 (9) |
| C32 | 0.3583 (3) | 0.2735 (3) | -0.0564 (2) | 0.0582 (11) |
| C33 | 0.4994 (4) | 0.4187 (4) | -0.0995 (1) | 0.0753 (14) |
| C34 | 0.3537 (4) | 0.4331 (4) | -0.0660 (2) | 0.095 (2) |
| C35 | 0.5958 (2) | 0.4096 (2) | 0.0117 (1) | 0.0357 (8) |
| C36 | 0.5986 (3) | 0.3441 (3) | 0.0452 (1) | 0.0626 (12) |
| C37 | 0.6828 (4) | 0.3329 (4) | 0.0506 (2) | 0.0700 (13) |
| C38 | 0.7656 (4) | 0.3863 (4) | 0.0233 (2) | 0.0686 (12) |
| C39 | 0.7659 (3) | 0.4532 (4) | -0.0096 (2) | 0.0794 (14) |
| C40 | 0.6841 (3) | 0.4654 (3) | -0.0151 (2) | 0.0592 (11) |
| C41 | 0.3986 (3) | 0.3934 (3) | 0.0544 (1) | 0.0487 (10) |
| C42 | 0.3686 (4) | 0.3068 (4) | 0.0829 (2) | 0.0756 (14) |
| C43 | 0.2968 (4) | 0.2811 (5) | 0.1203 (2) | 0.105 (2) |
| C44 | 0.2552 (4) | 0.3439 (7) | 0.1279 (2) | 0.107 (3) |
| C45 | 0.2822 (5) | 0.4241 (6) | 0.1009 (3) | 0.112 (2) |
| C46 | 0.3537 (3) | 0.4497 (4) | 0.0659 (2) | 0.0807 (15) |
| N47 | 0.5572 (2) | 0.7827 (2) | 0.0285 (1) | 0.0446 (8) |
| N48 | 0.4700 (3) | 0.7349 (3) | 0.0164 (1) | 0.0636 (10) |
| N49 | 0.3856 (4) | 0.6910 (5) | 0.0097 (2) | 0.120 (2) |

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

| $\mathrm{C} 1-\mathrm{O} 1$ | $1.395(4)$ | $\mathrm{C} 5-\mathrm{O} 5$ | $1.429(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{O5}$ | $1.406(4)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.498(5)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.526(4)$ | $\mathrm{C} 6-\mathrm{O} 6$ | $1.423(4)$ |


| $\mathrm{Ol}-\mathrm{Cl1}$ | 1.440 (4) | O6-Si30 | 1.647 (2) |
| :---: | :---: | :---: | :---: |
| C2-N18 | 1.430 (4) | N18-C19 | 1.333 (5) |
| C2-C3 | 1.528 (5) | C19-O20 | 1.226 (5) |
| C3-03 | 1.438 (4) | C19-C21 | 1.499 (7) |
| C3-C4 | 1.504 (5) | C22-023 | 1.200 (4) |
| O3-C22 | 1.361 (4) | C22-C24 | 1.475 (5) |
| C4-N47 | 1.481 (4) | N47-N48 | 1.202 (5) |
| C4-C5 | 1.524 (5) | N48-N49 | 1.132 (5) |
| $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ | 108.7 (3) | O5-C5-C4 | 108.6 (3) |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$ | 109.0 (3) | C6-C5-C4 | 114.9 (3) |
| $\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$ | 110.9 (3) | C1-O5-C5 | 111.1 (2) |
| $\mathrm{Cl}-\mathrm{Ol}-\mathrm{Cl1}$ | 112.3 (2) | O6-C6-C5 | 111.1 (3) |
| N18-C2-C1 | 111.2 (3) | C6-06-Si30 | 118.8 (2) |
| N18-C2-C3 | 112.4 (3) | C19-N18-C2 | 122.3 (3) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 105.8 (3) | O20-C19-N18 | 122.5 (4) |
| O3-C3-C4 | 109.7 (3) | $\mathrm{O} 20-\mathrm{C} 19-\mathrm{C} 21$ | 122.3 (4) |
| O3-C3-C2 | 109.5 (3) | $\mathrm{N} 18-\mathrm{C} 19-\mathrm{C} 21$ | 115.2 (4) |
| C4-C3-C2 | 110.3 (3) | $\mathrm{O} 23-\mathrm{C} 22-\mathrm{O} 3$ | 123.7 (3) |
| C22-03-C3 | 116.7 (3) | $\mathrm{O} 23-\mathrm{C} 22-\mathrm{C} 24$ | 124.4 (3) |
| N47-C4-C3 | 109.4 (2) | O3-C22-C24 | 111.9 (3) |
| N47-C4-C5 | 108.2 (3) | N48-N47-C4 | 116.0 (3) |
| C3-C4-C5 | 109.0 (3) | N49-N48-N47 | 173.2 (4) |
| O5-C5-C6 | 108.6 (3) |  |  |
| C3-C4-N47-N48 | 126.1 (3) | $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 47$ | -63.5 (3) |
| C5-C6-O6-Si30 | 157.6 (2) | $\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 18$ | -57.6 (4) |
| $\mathrm{Cl}-\mathrm{O1}-\mathrm{Cl1}-\mathrm{Cl2}$ | -145.4 (3) | C6-C5-C4-N47 | 60.8 (4) |
| C3-O3-C22-O23 | -0.0 (5) |  |  |

Spek, A. L. (1992a). PLUTON92. Program for Molecular Graphics.
Univ. of Utrecht. The Netherlands.
Spek, A. L. (1992b). PLATON92. Program for Molecular Geometry.
Univ. of Utrecht, The Netherlands.

Acta Cryst. (1995). C51, 1020-1023

# Conformational Studies of trans-1,4Substituted Cyclohexanes. I. trans-1,4Cyclohexanedicarbonitrile 

G. Echeverria,* G. Punte $\ddagger$ and B. E. Rivero§<br>Departamento de Física, Facultad de Ciencias Exactas, UNLP, CC 67, 1900 La Plata, Argentina

M. Barón $\ddagger$

Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina

(Received 24 February 1994; accepted 26 September 1994)

## Abstract

The molecules of the title compound $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2}\right)$, which each adopt a chair conformation with the CN substituents equatorially bonded, lie on crystallographic inversion centres and are linked by $\mathrm{CN} \cdots \mathrm{CN}$ intermolecular interactions to form (101) sheets. The sheets are additionally stabilized by short $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts.

## Comment

The molecules of trans-1,4-cyclohexanedicarboxylic acid and its derivatives exhibit, in solution, a nonvanishing dipole moment (Barón, 1991, and references therein). Similar results observed in other 1,4disubstituted cyclohexanes, e.g. 1,4-cyclohexanedione and 1,4-bis(dicyanomethylene)cyclohexane, have been described in terms of an equilibrium between chair and flexible forms (Le Févre \& Le Févre, 1956) or as due to a predominance of a deformed conformation in solution (Aihara, Kitazawa \& Iwasaki, 1968; Barón, 1991). Low-temperature X-ray singlecrystal data have shown that the molecules of 1,4 -

[^0]> Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: LI1129). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

## References

Enraf-Nonius (1990). MADNESS. Program for Area-Detector Data Interpretation. Enraf-Nonius, Delft, The Netherlands.
Field, R. A., Neville, D. C. A., Smith, R. W. \& Ferguson, M. A. J. (1994). Bioorg. Med. Chem. Lett. 4, 391-394.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A45, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.


[^0]:    * CONICET fellowship.
    $\dagger$ Also with Facultad de Ingeniería, UNLP, Argentina.
    $\ddagger$ Member of Carrera del Investigador Científico, CONICET, Argentina.
    $\S$ Member of Carrera del Investigador Científico, CICPBA, Argentina.

